Dynamic Epigenetic Landscapes are Associated with Multiple Myeloma Progression and Drug Resistance

<u>Rafael Renatino Canevarolo¹, Mark B. Meads², Maria L. C. Siqueira Silva¹, Praneeth Reddy Sudalagunta¹, Christopher Cubitt³, Gabriel De Avila²,</u> Raghunandan Reddy Alugubelli⁴, Amit Kulkarni⁵, Qi Zhang⁵, Oliver Hampton⁵, Kenneth H. Shain², and Ariosto Siqueira Silva¹.

1 – Department of Cancer Physiology; 2 – Department of Malignant Hematology; 3 – Cancer PK/PD Core; 4 – Collaborative Data Services Core; 5 – M2GEN.

INTRODUCTION

- Multiple myeloma (MM) is an incurable cancer of bone marrow-resident plasma cells, which evolves from a premalignant state, monoclonal gammopathy of undetermined significance (MGUS), to active disease.
- Despite often responding to initial therapy, MM tumors ultimately develop multidrug resistance leading to refractory disease and therapy failure.
- The molecular mechanisms driving MM progression and refractory disease remain poorly understood.
- Objective: to better understand the mechanisms driving MM progression and evolution of drug resistance by exploring the molecular data of a new cohort of myeloma patients treated at Moffitt Cancer Center.

APPROACH

We generated a new database comprising 1,123 bone marrow biopsies from MM patients treated at Moffitt Cancer Center, across MM spectrum.

- samples • These characterized (523 genetically Cytogenetics, 844 RNA-seq, 870 WES) and epigenetically (11 scATAC-seq).
- We have conducted pathway analysis of this dataset in databases curated Hallmarks, Enrichr, DB Super) to identify biological pathways and driving events associated with MM progression and refractory disease.

RESULTS

were clinically, FISH-

(KEGG,

1 MM progression from pre-malignant to active disease was associated with under-expression of genes related to cell adhesion, inflammatory cytokines and hematopoietic cell identity, while refractory disease presented over-expression of genes linked to cell cycle, energy metabolism, DNA repair, and protein/RNA synthesis/degradation.

Pre-malignant \rightarrow Active disease

CANCER HALLMARKS

MYC TARGETS V2

UNFOLDED PROTEIN RESPONSE

IL6 JAK STAT3 SIGNALING

INFLAMMATORY RESPONSE

KRAS SIGNALING UP

L2 STAT5 SIGNALING

HEME METABOLISM

COMPLEMENT

ALLOGRAFT REJECTION

-log (q value) 7.86 6.80 10.37 9.52 9.52 9.33 8.69 8.47 8.02

	APICAL JUNCTION	7.83
	KEGG PATHWAYS	-log (q value)
UP	AMINOACYL T-RNA BIOSYNTHESIS	6.77
	HEMATOPOIETIC CELL LINEAGE	13.34
	PRIMARY IMMUNODEFICIENCY	10.84
	CHEMOKINE SIGNALING PATHWAY	10.72
	CYTOKINE CYTOKINE RECEPTOR INTERACTION	8.53
OWN	ASTHMA	8.50
	NK MED CYTOTOXICITY	8.47
	LEISHMANIA INFECTION	8.26
	CELL ADHESION MOLECULES CAMS	7.87
	FOCAL ADHESION	6.89

	CANCER HALLMARKS	-log (q value)
	E2F TARGETS	15.00
	G2M CHECKPOINT	15.00
	MYC TARGETS V1	14.52
	OXIDATIVE PHOSPHORYLATION	13.39
UP	DNA REPAIR	11.85
	PEROXISOME	11.72
	MTORC1 SIGNALING	11.46
	FATTY ACID METABOLISM	10.02
	PI3K AKT MTOR SIGNALING	7.11
DOWN	KRAS SIGNALING DN	8.56
	KEGG PATHWAYS	-log (q value)
	OOCYTE MEIOSIS	15.00
	PROTEASOME	15.00
	CELL CYCLE	15.00
	PEROXISOME	10.98
IID	DNA REPLICATION	10.98
U F	OXPHOS	10.58
	ALZHEIMERS DISEASE	10.54
	HUNTINGTONS DISEASE	10.52
	PARKINSONS DISEASE	10.44
	SYSTEMIC LUPUS ERYTHEMATOSUS	9.94

2 These gene sets shared enrichment for specific histone modifications – H3K27me3 and H3K27ac, respectively – which are markers of epigenetic transcriptional regulation through chromatin accessibility modulation.

Pre-malignant \rightarrow Active disease

Newly-diagnosed MM \rightarrow Refractory MM

Epigenomics Roadmap HM ChIP-seq	Adjusted p-value
H3K27me3 erythroblast mm9	4.93E-15
H3K27me3 GM12878 hg19	5.31E-09
H3K27me3 SK-N-SH hg19	1.64E-08
H3K27me3 H1-hESC hg19	2.83E-08
H3K27me3 spleen mm9	6.89E-07
H3K27me3 MCF-7 hg19	4.91E-06
H3K27me3 A549 hg19	8.57E-07
H3K27me3 mammary epithelial cell hg19	9.41E-07
H3K27me3 keratinocyte hg19	8.82E-06
H3K27me3 fibroblast of lung hg19	2.71E-05

H3K27me3 represses gene expression

3 scATAC-seq data on 11 MM samples ranging from MGUS to late relapse (LRMM) confirmed that the binding sites of epigenetic regulators involved in the formation of super-enhancers like CTCF and YY1 – were more accessible in pre-malignant and CTCF LRMM stages, while newlydiagnosed MM (NDMM) showed increased chromatin accessibility for transcriptional factors related to pluripotency and cell stemness - such as OCT4 and SOX2.

Newly-diagnosed MM \rightarrow Refractory MM

Epigenomics Roadmap HM ChIP-seq	Adj. p-value
H3K27ac CD4 Naive Primary Cells	2.25E-209
H3K56ac IMR90	8.46E-159
H3K27ac Mobilized CD34 Primary Cells	4.27E-165
H3K27ac CD4 Memory Primary Cells	2.41E-132
H3K27ac CD8 Naive Primary Cells	9.23E-126
H3K27ac CD4+ CD25int CD127+ Tmem Primary Cells	4.98E-119
H3K4ac IMR90	1.37E-116
H4K8ac IMR90	1.50E-123
H3K27ac H9	7.68E-103
H3K56ac H1	2.69E-104

H3K27ac promotes gene expression

4 This epigenetic "memory" state is kept by Super enhancer-regulated core regulatory circuitries, which are super-enhancer controlled, self-regulated master TFs that can act as pioneer TFs and confer identity to cells and tissues. Many of them were differentially expressed across disease transitions.

Pre-malignant \rightarrow Active disease

UP		DOWN			
PRDM1		EBF1	FOXP1		
IRF4		ZEB2	ELF1		
MZF1		RB1	KLF6		
		SPI1	IKZF1		

- 5
- From pre-malignant to active MM, initial hits would increase Histone 3 methylation, leading to a genome-wide decreased gene expression, lose of B with simultaneous identity cell activation of pluripotency-associated TFs like OCT4, SOX2 and NANOG.
- From NDMM to LRMM. new mutations and stress caused by therapy regimens would increase Histone 3 acetylation, leading to a genome-wide increased gene expression, partial reacquisition of B cell identity with simultaneous activation pathways related to of accelerated metabolism proliferation, independence of the TME and multidrug resistance.

CONCLUSION

MM evolutionary dynamics in response to TME and therapeutic stress is triggered by diverse genetic and cytogenetic events, but ultimately implemented through epigenetic master regulators of the transcriptome.

ACKNOWLEDGEMENT

This work was sponsored in part by the Pentecost Family Foundation and Miles For Moffitt Milestone Award. We also acknowledge the Molecular Genomics and the PK/PD Core Facilities at Moffitt Cancer Center.

Modified from Mayran *et al., Nat Comm* 2019, 10: 3807 Newly-diagnosed MM → Refractory MM

RFX5 ZNF189 NFIL3 YY1 ZNF217 KLF13 FOXP1 NFE2L2 CTCF SMARCA5 ARID2 BCOR PBX2 ELF1 IRF2 RARA RELA SP3 ERF TSHZ1 ZNF184 CREB1 IKZF1

DOWN

JUN

MZF1

ZHX2

CHD2

KLF6

Our data lead us to propose a new bow-tie model for myelomatogenesis and disease progression in which tumor microenvironment, stress, cytogenetic abnormalities and mutation signals are inputs that converge to epigenetic reprograming, leading to changes in chromatin accessibility of SE-regulated master TFs of B cell identity.

