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Abstract

Digital pathology has transformed the traditional pathology practice of an-
alyzing tissue under a microscope into a computer vision workflow. Whole
slide imaging allows pathologists to view and analyze microscopic images on
a computer monitor, which also enables computational pathology. By lever-
aging artificial intelligence (AI) and machine learning, computational pathol-
ogy has emerged as a promising field in recent years. Recently, task-specific
AI (e.g., convolutional neural networks) has risen to the forefront achieving
above-human performance in many image processing and computer vision
tasks. The performance of task-specific AI models depends on the availabil-
ity of many annotated training datasets, which presents as a rate-limiting
factor for AI development in pathology. Tasks-specific AI models cannot
benefit from multimodal data and lack generalization, e.g., the AI models
often struggle to generalize to new datasets or unseen variations in image
quality, staining techniques, or tissue types. The 2020s are witnessing the
rise of foundation models and generative AI. A foundation model is a large
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AI model trained using sizeable data, which is later adapted (or finetuned)
to perform different tasks using a modest amount of task-specific annotated
data. These AI models provide in-context learning, can self-correct their
mistakes, and promptly adjust to user feedback. In this review, we provide
a brief overview of recent advances in computational pathology enabled by
task-specific AI, their challenges, and limitations, and then introduce various
foundation models. We propose to create a pathology-specific generative AI
based on multimodal foundation models and present its potentially transfor-
mative role in digital pathology. We describe different use cases delineating
how it could serve as an expert companion of pathologists and help them ef-
ficiently and objectively perform routine laboratory tasks, including quanti-
fying image analysis, generating pathology reports, diagnosis, and prognosis.
We also outline the potential role that foundation models and generative AI
can play in standardizing the pathology laboratory workflow, education, and
training.

Keywords: artificial intelligence, machine learning, digital pathology,
histopathology, computational pathology, whole slide imaging, large
language models, vision-language models, multimodal data, foundation
models

1. Introduction

Conventional pathology methods have been crucial in diagnosing disease,
heavily relying on examining tissue samples under a microscope. With tech-
nological advancements and a growing emphasis on precision medicine, digital
pathology has emerged as a new approach for conducting precise quantita-
tive assessments. Digital pathology involves utilizing whole slide imaging
(WSI) to digitize and analyze tissue samples using a computer. Computa-
tional pathology further builds on it and incorporates artificial intelligence
(AI) and machine learning to enable the extraction of information that goes
beyond what the human eye can perceive. The clinical responsibilities of
pathologists, such as providing precise diagnoses and quantifying biomarkers
for diagnosis, prognosis, and predictions, may be strengthened in terms of
precision, reproducibility, and scalability by using AI-driven analysis tools.
AI can address the challenging problems in pathology workflow, including:
(1) increasing workload and staff shortages leading to physician burnout, (2)
growing diagnostic complexity, including ever-expanding cancer protocols
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and biomarkers, (3) case variability, often involving rare diseases or over-
lapping morphological changes, (4) issues with the quality of slides due to
artifacts introduced by tissue folding, staining inconsistencies, and compres-
sion artifacts, and (5) lack of standardization, which hinders interoperability
between different laboratories, platforms, image formats, and analysis tools.

AI is a broad field focused on simulating human intelligence by creating
models and algorithms to automate various tasks, such as recognizing objects
in images, understanding and generating natural language text, or making
predictions based on historical data [1]. Machine learning is a subset of
AI that involves creating statistical and mathematical models and learning
algorithms for recognizing patterns in the data [2]. Artificial neural networks
that attempt to mimic the human brain’s way of analyzing data have recently
made significant progress [3]. The advancements made possible by artificial
neural networks have revolutionized computer vision (a sub-field of AI that
deals with image processing) and natural language processing (a sub-field of
AI that deals with text and speech) [3]. Although the initial adoption of these
technologies in medicine and healthcare was slow, recently, medical imaging
has been transforming at an unprecedented rate. Digital and computational
pathology are also rapidly evolving on the research front, with the industry
offering new AI-enabled technologies [4, 5, 6, 7, 8].

Although task-specific traditional AI tools date back to the 1970s, the
decade of 2010 saw a sharp rise in the research and development of narrow
AI methods enabled by deep learning models, e.g., convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), and Transformers. These
AI models eliminated the need for feature engineering using domain exper-
tise, a defining characteristic of classical machine learning techniques, widely
known as pathomics in the pathology domain [9]. For a given task, the perfor-
mance of these artificial neural network-based AI models surpassed previous
AI techniques. Developing a task-specific AI starts with selecting a particu-
lar problem, e.g., counting mitosis in a histopathology image, then curating
and annotating relevant historical data, and finally, training the model by
learning optimal parameters (or weights). Annotating (or equivalently label-
ing) data require experts (pathologists) to carefully review each data sample
and identify/define objects/patterns that help AI learn about the task during
training. The performance of task-specific AI with supervised learning tech-
niques strongly depends on the availability of large, high-quality, annotated
training datasets. Despite boasting above-human performance, task-specific
AI suffers from significant limitations, including the requirement for a large
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amount of expert-annotated datasets, the lack of performance generalization
(e.g., the AI may fail if used on images generated using a staining protocol
different than the one used for generating training images), and the inability
to use relevant data from other modalities, e.g., patient demographics, labo-
ratory data, or their prior disease history cannot help the model improve its
prediction accuracy [5, 4]. Analysis of task-specific AI in pathology through
qualitative interviews of 24 professionals revealed such shortcomings in the
existing tools, which hinder their broad integration in the decision-making
processes of pathologists [10]. For further details, the reader is referred to
the surveys reviewing the use of AI in pathology [11, 12].

The 2020s are witnessing the rise of foundation models and generative
AI. Foundation models are very large task-agnostic AI models trained using
unannotated (possibly multimodal) datasets and form the brain of genera-
tive AI [13, 14]. A trained foundation model can be adapted to perform
many different tasks using a modest amount of task-specific annotated data
[14]. Training a foundation model may not require manually annotating large
amounts of data as these models use self-, semi- or unsupervised learning
techniques. Foundation models can consume data from various modalities,
including images (e.g., WSIs), text (e.g., pathology reports), and tabular
data (e.g., medical records). The well-known generative AI model, Chat-
GPT, is based on a foundation model called Generative Pre-training Trans-
former (GPT) [15, 16, 17, 18, 19, 20]. Foundation models hold much promise
for quantitative image analysis, diagnosis and prognosis, pathology report
generation, and question/answering with conversational use in pathology lab
workflow[13, 14].

Section 2 provides a brief overview of AI and machine learning models and
advances enabled by these task-specific AI models in computational pathol-
ogy. We introduce various foundation models, their structure, characteristics,
and limitation in Section 3. Section 4 outlines the transformative role that
foundation models may play in the pathology laboratory workflow in the
near future. We provide use cases delineating how a pathology generative AI
based on a foundation model could serve as an expert companion pathologist
that assists in efficiently and objectively performing routine laboratory tasks,
including image analysis, presenting and justifying findings, quantifying the
analysis, generating reports, performing prognostics, and making predictions.
We also outline the potential role that foundation models and generative AI
can play in pathology education and training before concluding the review
in Section 5.
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• Tumor detection, classification, localization, segmentation
• IHC, ISH grading, scoring
• Morphological subtyping and feature analysis
• Disease diagnosis, quantification, classification, clustering
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• Biomarker discovery (nuclear, cytoplasmic, membranes)
• Defective DNA
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tumor, organ compartments, etc.)

• Cell Counting
• Stromal feature extraction/morphometry
• Rare event screening (highlighting samples, micrometastases)
• Next-generation morphology (extracting new patterns from digital 

images, clinical correlations)
• Automated management and prioritization of pathology workflows 
• Digital Image Analysis (color correction, filtering, edge detection, pixel 

intensity thresholding, mathematical transformations
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Miscellaneous 

• Study of causes, nature, and effects of disease
• Examine tissues, organs, and body fluids

• Digitization of pathology specimen (WSI)
• Electronic analysis and sharing of data and reports

• Combines AI and DP to extract meaningful information
• Develop algorithms to automate pathology tasks and processes

Pathology

Digital Pathology

Computational Pathology

A

B

Figure 1: Pathology, digital pathology, and computational pathology - definitions and
tasks are presented.
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Box 1 — Definitions of key terminologies

Digital pathology A comprehensive term that includes various tools and systems to digitize pathology
slides and associated meta-data, as well as their storage, review, analysis, and support-
ing infrastructure.

Computational
pathology

A branch of pathology that utilizes computational techniques to analyze methods of
studying disease through patient specimens. It may involve using AI methods to analyze
data and extract meaningful information from digitized pathology images.

Artificial intelligence
(AI)

The field of AI aims to simulate human intelligence in machines, allowing them to
perform tasks such as learning, problem-solving, and decision-making.

Machine learning It is a branch of AI that programs computers to optimize a performance criterion using
sample data or past experience. It uses the theory of statistics to build learning models.

Artificial neurons These are the fundamental building blocks of artificial neural networks. It is a mathe-
matical function that receives one or more inputs, applies a weighted sum, adds a bias
term, and applies a nonlinear activation function to the result. The output of the acti-
vation function is then passed on to the next layer of neurons.

Artificial neural
network

A computational model inspired by the structure and function of biological neural net-
works in the brain. It is a network of interconnected artificial neurons that work together
to process information and make predictions or decisions.

Neural network
architecture

The architecture of a neural network refers to its structure, which is determined by the
number and arrangement of its layers, the number of neurons in each layer, and the
connections between the neurons.

AI training The process of teaching an AI system to learn patterns from data and make accurate
predictions or decisions. The training process involves feeding large amounts of data
into the AI system and adjusting its internal parameters to optimize performance.

Supervised learning AI training technique that uses annotated data, i.e., each data point is associated with
a known target value. Goal is to learn a mapping between inputs and outputs such that
trained AI can make accurate predictions on new, unlabeled data. If learning involves
lesser labeled data compared to unlabeled samples, it is weakly-supervised learning.

Self-supervised
learning

This technique of training AI does not require explicit data annotations. AI learns
to solve a pre-designed auxiliary task or objective using the data’s inherent structure,
allowing the model to learn meaningful representations through self-created supervision
signals.

Unsupervised learning A learning technique for finding patterns, relationships, or structure in the data, such
as clusters or groups of similar data points, without any knowledge of the ground truth.
Unlike self-supervised learning, which uses a supervisory signal implicit in the data,
unsupervised learning does not use any supervisory signal.

Computer vision A field of AI that enables computers and systems to derive meaningful information from
digital images, videos, and other visual data.

Natural language
processing

An area of AI that deals with a wide range of computational methods and techniques
for analyzing, understanding, and generating natural language text.

Multimodal AI Multimodal AI refers to AI models that involve multiple data modalities, such as vi-
sion (images) and language (text), and require AI to integrate information across data
modalities.

Convolutional neural
networks (CNNs)

CNNs are types of artificial neural networks commonly used for image and video anal-
ysis. CNNs are designed to automatically and adaptively learn spatial hierarchies of
features from input images by using multiple convolutional layers, followed by pooling
layers and fully connected layers.

Recurrent neural
networks (RNNs)

RNNs are specialized for processing sequential data, such as text, speech, or time series.
RNNs are designed to capture context and dependencies between the elements of a
sequence.

Graph neural
networks (GNNs)

GNNs are neural networks that process data with a graph structure. GNNs analyze
relationships between objects (nodes) and their mutual relationships(edges) by itera-
tively using message-passing algorithms to update the features, allowing the network to
capture the relationships between nodes in the graph.

Transformers Transformers are neural networks that use a self-attention mechanism (or equivalently
scalded dot-product) to capture relationships between input elements, especially in long
sequences. They can process and learn from all data types, including images, text,
speech, etc.

Foundation models Foundation models are an emerging class of AI trained on a vast quantity of unannotated
data at scale resulting in a model that can be adapted to a wide range of downstream
tasks with only a handful of annotated examples. They use Transformer architecture
and are the workhorse of generative AI models.

Generative AI models These are models specialized in generating new data similar to the training data, such
as images or text. Examples include Bayesian networks, GANs, and foundation models
such as ChatGPT, GPT-4, Stable Diffusion, and Dall-E 2.
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2. AI in Digital Pathology

AI comprises computational methods, statistical and mathematical mod-
els, and the implementation of various algorithms to mimic human-style intel-
ligence. AI-based technologies have enabled pathologists and researchers to
analyze large amounts of data with greater accuracy and speed, making the
process of disease diagnosis faster and more precise [4, 21, 4, 22, 23]. AI has
made it easier to identify patterns and biomarkers that were previously chal-
lenging to detect, leading to more personalized and targeted treatments [24].

2.1. Digital Pathology

Digital pathology involves digitizing tissue specimens, allowing them to
be analyzed and shared electronically. Digital pathology uses complex imag-
ing systems to capture high-resolution images of tissue specimens, which can
then be viewed and analyzed on a computer screen [25]. Digital pathol-
ogy improves the accuracy and efficiency of pathology diagnoses by allow-
ing pathologists to access and share images remotely, collaborate with other
experts, and integrate computer-aided analysis tools. With the advent of
digital pathology, the amount of data generated has increased exponentially,
enabling the automation of time-consuming processes such as segmentation
and mitotic counting [26]. Public data archives, such as The Cancer Genome
Atlas (TCGA) [27], Clinical Proteomic Tumor Analysis Consortium (CP-
TAC) [28], and The Cancer Imaging Archive (TCIA) [29], host pathology
image data for multiple cancer sites. This is possible only because of digital
pathology and other advancements.

Whole Slide Imaging (WSI) is the technology that allows high-resolution
digital images of entire microscope slides to be created and viewed on a
computer screen. This process involves scanning glass slides containing tissue
samples or other specimens using specialized digital scanners. WSIs can
capture the entire slide at very high magnification, allowing users to zoom
in and examine specific regions of interest in great detail [30]. WSIs are
usually too large for contemporary computers to analyze directly, so they are
tessellated into smaller tiles or patches, which serve as input for pathology
AI workflows [30].

2.2. Computational Pathology

Computational pathology combines digital pathology with AI, machine
learning, and other computational techniques to extract meaningful informa-
tion [30]. Often interchangeably called “histomics,” “pathomics,” or “tissue
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Figure 2: A schematic layout of various machine learning algorithms and AI models used in
digital pathology. The top row (sub-figures A to D) highlights classical machine learning
algorithms. Rows 2 and 3 (sub-figures E to H) present task-specific AI models). The
last row (sub-figure I) refers to foundation models, the brain behind generative AI, such
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outlined in Section 4.
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phenomics,” computational pathology aims to develop algorithms that can
automatically detect and classify pathology images, predict disease outcomes,
and identify new biomarkers for disease [31]. Computational pathology in-
volves extracting many features from histopathology slides (called histomics)
or pathology slides (called pathomics) and analyzing these features to relate
to biological and clinical endpoints. Computational pathology also aims to
standardize pathology diagnoses and reduce variability between pathologists
[30]. Notwithstanding quality issues in digital pathology [32], computational
pathology methods can perform well on tasks such as classification, segmen-
tation, and analysis of digital pathology images, at times surpassing human-
level performance [33, 34]. The definitions of pathology, digital pathology,
and computational pathology are illustrated in Fig. 1A, and their key tasks
are illustrated in Fig. 1B.

2.3. Classical Machine Learning in Digital Pathology

Classical machine learning consists of manually selecting informative fea-
tures from the data by domain experts and then using these features for
prediction, classification, or regression. The manual extraction and selection
of features is also referred to as feature engineering using computer vision
techniques based on morphology and texture, for instance. Classical machine
learning has been extensively used in digital pathology for image segmenta-
tion and classification [2] using Support Vector Machines (SVMs), Random
Forests, k-Nearest Neighbor (k-NN), Decision Trees, and others [2, 35]. A
detailed review of the classical machine learning techniques in digital pathol-
ogy is presented in [36] and [37]. Owing to the manual selection of usable and
informative features, the applicability of classical machine learning methods
is limited [36, 37].

2.4. Task-specific AI in Digital Pathology

More recently, task-specific AI models based on artificial neural networks
have been gaining popularity [38, 39, 40, 41]. Artificial neural networks
use stacked layers of artificial neurons to process large amounts of data and
identify underlying patterns. The model selects a set of useful and infor-
mative features based on the assigned task without any human intervention.
These models include Convolutional Neural Networks (CNNs), variants of
Recurrent Neural Networks (RNNs), Graph Neural Networks (GNNs), and
Transformers, as illustrated in Fig. 2 [2]. We refer to these approaches as
task-specific or narrow AI because of their limited scope. Also known as weak
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AI, they are incapable of general intelligence or human-like reasoning [42].
Developing a task-specific AI starts with selecting a particular task, followed
by data collection and annotation. Finally, AI is supervised to learn patterns
in the data by minimizing its prediction error. With the availability of digi-
tal slides and large computational power fueled by graphical processing units
(GPUs; electronic circuits responsible for graphics manipulation and output)
and tensor processing units (TPUs; Google’s custom integrated circuits used
to accelerate machine learning workloads), artificial neural networks-based
task-specific AI models have found a strong foothold in digital pathology
[4, 34, 43]. In the following discussion, we briefly introduce task-specific
AI models and their essential components. In Table 1, we present a non-
exhaustive list of various categories of task-specific AI models used in digital
pathology. Interested readers are encouraged to explore the relevant works
of interest.

2.4.1. Convolutional Neural Networks (CNNs)

CNNs are specialized artificial neural networks for processing image data.
CNNs are designed to automatically learn and extract features from images,
such as lines, edges, corners, and textures, through the convolution operation.
Convolution involves sliding a filter over an input image and computing dot
products between the filter and the image pixels. The resulting features are
used to classify or detect objects in the image. Based on the filter type, shape,
size, and arrangement, various architectures of CNNs have been proposed.

2.4.2. Recurrent Neural Networks (RNNs)

RNNs process sequential data like speech, text, or time series. RNNs
are designed to capture temporal dependencies in the data by maintaining
a hidden state that is updated at each time step. The hidden state encodes
information from previous time steps and provides context for the current
time step. Long Short-Term Memory networks (LSTMs) and Gated Recur-
rent Units (GRUs) are RNNs that help the model better capture long-term
dependencies and avoid the vanishing gradient problem of RNNs using se-
quential processing of data.

2.4.3. Graph Neural Networks (GNNs)

GNNs process graph-structured data, such as social networks, molecu-
lar data, and knowledge graphs [44]. GNNs are designed to capture local
and global graph structures by aggregating information from neighboring
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nodes and edges. GNNs typically operate on a fixed-size local neighborhood
around each node, allowing them to scale to large graphs. GNNs have shown
promising results in various applications, including node classification, link
prediction, and graph generation. GNNs have been used to analyze complex
biological networks, drug discovery models, cell classification, tumor struc-
tures, and protein structures [45, 46, 47].

2.4.4. Transformers

Transformers were initially introduced for language translation [48]. How-
ever, they have shown remarkable performance in various AI tasks, including
computer vision and time series analysis [13, 49]. Unlike RNNs, Transformers
do not require that the sequential data be processed in order. Instead, they
are designed to process variable-length input sequences (such as words in a
sentence) without recurrent connections. Transformers use a self-attention
mechanism that allows each piece of input (or token) to attend to other to-
kens in the sequence, capturing long-range dependencies [48]. Transformers
have achieved state-of-the-art results in various natural language computer
vision and graph processing tasks [48, 49].

2.5. AI-based Algorithms used in Pathology

Interest in AI/ML-enabled medical devices has increased in recent years.
The US Food and Drug Administration (FDA) has cleared more than 500
healthcare-related AI algorithms, four of which are for pathology [75]. Among
them, two were introduced earlier, and the other two more recently. “PAP-
NET Testing System” was approved in 1995, and it was designed for re-
screening negative Pap tests or as a primary screener[76]. “Pathwork Tissue
of Origin Test” was approved in 2008, and it is a molecular diagnostic test
developed to assist in diagnosing metastatic, poorly differentiated, and un-
differentiated cancer [76]. “Tissue of Origin Test Kit FFPE” was approved
in 2012, and it is an in vitro diagnostic to measure the degree of similarity
between the RNA expression patterns in a patient’s formalin-fixed, paraffin-
embedded (FFPE) tumor and the RNA expression patterns in a database of
fifteen tumor types [76]. “Paige Prostate” was recently approved in 2021, and
it is a software device to assist pathologists in the detection of foci that are
suspicious for cancer during the review of scanned WSI from prostate nee-
dle biopsies prepared from H&E stained FFPE tissue [76, 7]. The PaigeAI
prostate algorithm and the Pathwork digital and AI platform are the pio-
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Table 1: Summary of AI models used in digital pathology.
AI Model Task Ref

CNN MIDOG: Mitosis domain generalization challenge. [50]

CNN Gleason grading and diagnosis of prostate cancer. [51]

CNN Feature extraction to classify brain tumor grade. [52]

CNN Disease outcome prediction in colorectal cancer. [53]

CNN Prediction of OS using Glioma multimodal data. [54]

CNN Mitosis detection in breast cancer. [55]

CNN Correlations between true hypoxia fraction in histological
and the approximated fraction in MRI scans.

[56]

CNN+GAN Similarity between virtually stained images (generated by
AI model) & histochemically stained images.

[56]

GAN Nuclei segmentation on histopathology images. [57]

CNN Segment nuclei in histology images using weakly-
supervised training

[58]

CNN-Review Deep learning in digital pathology for breast cancer. [59]

LSTM Predicting sentiment, text categorization in records. [60]

LSTM Medical image denoising. [61]

LSTM Medical event prediction using a multi-channel fusion of
EHR data.

[62]

LSTM De-identification of medical text. [63]

LSTM 4D medical image segmentation. [64]

GNN Learn micro- and macro-structural features in H&E slides
of breast cancer.

[65]

GNN Grading colorectal cancer in histology images. [66]

GNN Classify healthy tissue from dysplastic gland areas in the
colorectal cancer histology slides.

[67]

GNN Classify infiltrating ductal carcinoma (IDC) and ductal
carcinoma in situ (DCIS) breast cancer and grade Gleason
3 and 4 prostate cancer.

[68]

GNN Stratify prostate cancer using tissue microarrays. [46]

GNN-Review GNN-based methods in cancer pathology. [44, 69]

Transformers Predicting RNAseq expressions from kidney WSIs using
multiple instance learning.

[22]

Transformers Predicting biomarkers from histopathology slides in col-
orectal cancer.

[70]

Transformers WSI representations using unsupervised learning. [71]

Transformers Reviews on use of Transformers in Medical field. [44, 72, 73, 74]

neering algorithms that have significantly impacted pathology practices by
aiding in diagnosing and characterizing various diseases.

Pathology has a branch of anatomic pathology (AP) and clinical pathol-
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ogy (CP). The four algorithms mentioned above exclusively pertain to AP,
where the focus lies on examining tissue samples for diagnosing diseases such
as cancer. It is worth mentioning that listing AI/ML-related algorithms in
CP, which concentrates on the analysis of bodily fluids and laboratory tests,
is beyond the purview of this specific review. Moreover, despite the notewor-
thy progress in pathology AI, to the best of our knowledge, there has not yet
been a generative AI algorithm developed for pathology, AP, or CP. Genera-
tive algorithms have the capability to create new data or images, potentially
aiding in generating synthetic samples for training and research purposes.
While such algorithms have seen success in other domains, their application
in pathology, encompassing both anatomic and clinical aspects, has yet to
be realized. The absence of generative AI in pathology presents a promising
avenue for future research and exploration to unlock new possibilities and
enhance the field’s diagnostic and prognostic capabilities.

2.6. Limitations of Task-Specific AI

Task-specific AI models have many limitations restricting their widespread
use in digital pathology.

1. Task-specificity: Task specificity refers to the fact that the trained
AI performs well on a single task only, e.g., grading cancer sub-types
in an organ using H&E slides. A change in the number of grades,
organ type, or cancer type (same organ) will render the model useless
(significantly reducing its accuracy with low reliability) and will require
model retraining [39, 77].

2. Distribution of the input data: These AI models require the input data
to have similar characteristics and follow the same probability distri-
bution function of the input data (the mean and standard deviation
and range of the pixel values of WSI pixels) [39, 78]. Adding natural
or adversarial noise may significantly reduce AI’s performance [79]. AI
models are known to be fragile in the presence of noisy inputs, sub-
tle changes in the data, or adversarial attacks [40, 39, 79]. These AI
models cannot generalize to changes in data resulting from various com-
mon reasons, e.g., hardware, software, firmware upgrades in scanners,
changes in the staining quality or the protocol, shifts in population de-
mographics (e.g., a different geographical region), and changes in data
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patterns due to new diseases such as COVID [41, 77]. New representa-
tive data must be collected and annotated for each changing scenario
to retrain (fine-tune) the AI models to be current and accurate.

3. Requirement of large annotated task-specific datasets: The tasks-specific
AI requires large annotated datasets for training. The success of these
models depends mainly on the availability of large, task-specific an-
notated datasets. This requirement stems from the data-driven na-
ture of these models, which learn to identify informative features from
data without needing domain experts to engineer data features [80].
By leveraging vast amounts of annotated, independent, and identically
distributed (i.i.d) data, models can uncover hidden patterns and sub-
visual features that may be difficult for humans to detect. However,
obtaining a large annotated dataset remains a critical challenge for AI
models in digital pathology. These AI models cannot directly benefit
from large amounts of unannotated datasets, e.g., WSIs, pathology re-
ports, clinical notes, etc., and may require techniques such as weakly
supervised learning, unsupervised learning, transfer learning, and con-
tinual learning [81, 82].

4. Single data modality: The task-specific AI models are generally re-
stricted to processing one data modality only. Incorporating informa-
tion from other modalities, e.g., the patient’s medical data from med-
ical records, omics data, or radiographs, into the AI decision-making
is generally not straightforward [44]. Recently, some research efforts
have focused on creating AI models that can process multimodal data
to improve their predictive accuracy with moderate success [47, 83, 84].

5. Knowledge accumulation: The recent success of ChatGPT has shown
that creating an internal general-purpose knowledge base is essential
for successful and robust AI models [16, 17]. ChatGPT has a central
repository of information created during model training using 570GB
of data from books, web-based text, Wikipedia, articles, and other
online writings [15, 16, 18]. There is no precedence for creating such
models in digital pathology, medical imaging, or any area of medical
data processing. Task-specific, narrow versions of AI models are built
by individual academic labs or industries that do not contribute to
reusable knowledge accumulation [44].
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6. Transparency and reproducibility: Transparency and reproducibility of
AI models are a challenge that undermines the enormous potential of
applying such methods to complex tasks. The lack of sufficient details
regarding Methods and the unavailability of algorithm/code in a pub-
lished work by the Google Health team on breast cancer screening [85]
was recently raised [86, 87]. The research community is gradually tran-
sitioning to open-access, reproducible, and transparent methodologies.

7. Explainability: The explainability of AI refers to the challenge of un-
derstanding how and why an AI makes a particular decision or predic-
tion [88]. While AI can make accurate predictions or decisions, they
often do so in ways that are opaque or difficult to understand for hu-
man beings. This lack of transparency can be problematic in scenarios
where decisions made by AI have significant real-world consequences.
Interpretable or explainable narrow AI models with attribution maps
produce results humans can easily understand and interpret. However,
these approaches come at the cost of reduced accuracy or increased
model complexity [89].
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Rule-based, hand-engineered feature extraction Automated feature extraction Emergent and homogenization capabilities

Transformers
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Support vector machine k-nearest neighbor
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Figure 3: The evolution of machine learning models used in digital pathology. The 2020s
are witnessing the rise of generative AI based on foundation models. In the near future,
foundation models and generative AI will become the preferred computational approaches
in digital pathology.

3. Foundation Models and Generative AI

The 2020s are witnessing the rise of foundation models - large AI models
pre-trained using unannotated multimodal datasets (please refer to Figs. 2
and 3) [13]. A trained foundation model can be adapted (or fine-tuned) to
perform different tasks using limited annotated examples, much less than re-
quired to train tasks-specific AI. In the following, we present our perspective

15



on how foundation models and generative AI that use these models can trans-
form the digital pathology laboratory workflow. The pathology-specific foun-
dation models can be created and fine-tuned to serve as a pathologist’s expert
assistant by performing quantitative image analysis for diagnosis, prognosis,
disease grading, and prediction. It can then generate pathology reports based
on the presented imaging data and converse with the pathologist to justify
the findings presented in the generated reports.

3.1. Foundation Models

The term “foundation models” was initially coined by Bommasani et al.
to describe recently proposed models that have led to a paradigm shift in
AI model design, development, and deployment processes [13]. Foundation
models are huge models trained at scale using comprehensive unannotated
data (possibly multimodal). Foundation models generally have billions or
trillions of learnable parameters and thousands of petaflops (floating point
operations) [16, 17, 90, 91, 92]. The unannotated datasets may consist of
billions of words (or tokens) and images from the internet without any la-
bels assigned by human operators [92]. Foundation models leverage the
existing concepts of pre-training, transfer learning, and unsupervised and
self-supervised learning. However, their essence lies in scaling because of
the following three factors: (i) the introduction of Transformer architecture
[48] that supports training models with the number of learnable parameters
in billions or trillions, (ii) the availability of thousands of GPUs, and (iii)
availability of massive training datasets that can reach billions of tokens for
natural language processing and hundreds of millions of images for computer
vision tasks [13, 48].

Recently, a host of foundation models have been trained for language,
vision, and joint language-vision (multimodal) tasks and shared via GitHub1

and Hugging Face2. Some of the remarkable works include BERT and RoBERTa
in language processing [93, 94], Vision Transformers for image processing
tasks [95], Mask2Former, OneFormer, and ClipSeg for image segmentation
[96, 97, 98], Perceiver IO for multimodal (text, images, audio, and video)
problems [99], ViperGPT for answering visual queries using code genera-
tion [100], LLaVA for visual instruction tuning [101], and BLIP-2 for image
captioning, visual question-answering, and chat-based prompting [102].

1https://github.com/trending
2https://huggingface.co
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3.2. Characteristics of Foundation Models

Some distinguishing characteristics of foundation models are summarized
as follows:

• Expressivity is the ability of foundation models to learn, capture, and
represent the relevant information from data [13]. Foundation models
are more expressive than their task-specific AI models as they ex-
clusively use the Transformers architecture, which learns long-range
relationships and higher-order interactions in the data using a self-
attention mechanism [48]. There exists a trade-off between the model’s
expressivity and its efficiency. Increasing the model size may increase
its expressivity at the cost of reduced efficiency [13]. Recently pro-
posed foundation models such as Perceiver IO and GANformer at-
tempt to offer a balance between efficiency and expressivity [99, 103].

• Scalability refers to the ability of a foundation model to efficiently con-
sume large amounts of data [13]. With the ever-growing availability
of data from diverse sources, the foundation model needs to be capa-
ble of further scaling while overcoming the challenges of failure and
catastrophic forgetting [41, 81].

• Multimodality is the ability of the foundation model to learn relations
among various modalities of the data [13]. Humans perceive knowl-
edge through processing multimodal data. GPT-4 is a multimodal
foundation model [15]. Other multimodal models include CLIP [104],
ALIGN [105], SimVLM [106], Flamingo [107], and CoCa [108].

• Compositionality is the ability of a foundation model to generalize to
new tasks and contexts [13]. Compositionality helps foundation mod-
els achieve out-of-distribution generalization and perform in-context-
learning [13, 109].

• Emergence is the characteristic introduced by scaling the Transformer
architecture with large datasets and computational resources [48, 13].
Emergence means that the behavior of the trained AI model is implic-
itly induced rather than explicitly constructed [13, 109]. In-context
learning is an example of emergence in foundation models [109, 110].

• Homogenization is also introduced by scaling and refers to the consol-
idation of methodologies for building AI models across a wide range
of applications [13]. For example, almost all language processing tasks
can be performed by a single large language model, e.g., BERT [93],
GPT [15, 17, 18, 19], T5 [90], or many others [111].

17



• Transfer learning, adaptation, and fine-tuning are the defining char-
acteristics of foundation models [13, 112, 110]. These characteristics
imply that the skills that AI may learn from one task will often trans-
fer to new tasks. A foundation model may adapt to the new tasks
without the need for any annotated examples, referred to as zero-
shot learning. When a few examples are used to fine-tune the AI, we
call this few-shot learning [13]. Generally, all foundational models are
pre-trained using unannotated datasets and later adapted using small
annotated datasets for specific downstream tasks. A recent survey
reviews the various pre-training methods used in deep learning and
foundation models on medical data [113].

• In-context learning is the ability of a trained foundation model to learn
a new task or correct itself using demonstration and without updating
model’s parameters which is usually done via gradient descent algo-
rithm [17, 110, 114]. In-context learning is a scale-enabled emergent
ability that allows foundation models to generalize to new tasks with-
out having to re-train the AI model again. GPT-2, a relatively small
model having 1.5 billion parameters, did not permit in-context learn-
ing [18]. It was GPT-3 with its 175 billion parameters that exhibited
in-context learning [17]. However, in-context learning introduces the
necessity for prompt engineering, i.e., finding the most appropriate
prompt to allow AI to solve the task at hand [114, 110]. A prompt is
a piece of text, image, or symbols inserted in the input of AI so that
the given task can be re-formulated as the original task for which the
model was trained [17, 109, 110].

3.3. Types of Foundation Models

Foundation models are an emerging area of AI that has shown great
promise, e.g., ChatGPT, GPT-4, DALL-E 2, and Stable Diffusion are foun-
dation models that can generate impressive text and images, provide concise
summaries of large datasets, and help analyze unstructured data efficiently
[16, 15, 115, 116]. These models can be further divided into large language
models that tackle natural language processing tasks and vision-language
models that handle multimodal learning jointly from images, text, and other
data sources.
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3.3.1. Large Language AI Models

Large language models can handle various natural language processing
tasks, including text generation, natural language understating, sentiment
analysis, question answering, information retrieval, reading comprehension,
commonsense reasoning, natural language inferences, word sense disambigua-
tion, and others [13]. With the introduction of word embeddings, where
each word in a sentence was associated with a context-independent vector
of real numbers [117], the natural language processing field has seen con-
siderable progress [93]. Following the success of word embeddings, autore-
gressive language models were proposed to employ self-supervised or weakly-
supervised learning to predict the next word in a sentence given the previous
words [93]. Autoregressive models such as GPT, ELMo, and ULMFiT use
the context of the words in representation embeddings [19, 118, 119]. The
Transformer architecture enabled self-supervised learning at scale resulting
in models like BERT, GPT, GPT-2, GPT-3, GPT-4, LLaMA, T5, and BART
[93, 19, 18, 17, 15, 94, 90, 120, 121]. Most of these industry-sponsored mod-
els are not open-source for researchers [15, 16]. Recently, BLOOM, a 176B-
parameter open-access language model, was developed with the collaboration
of hundreds of researchers [91]. BLOOM is a decoder-only Transformer lan-
guage model trained on the ROOTS corpus, a dataset comprising hundreds
of sources in 46 natural and 13 programming languages (59 in total) [91].
A comprehensive review of large language models is out of the scope of this
article. For a comprehensive review of the large language models, please refer
to review papers and blogs [111].

3.3.2. Vision-Language AI Models

Vision-language AI can learn to perform various tasks involving images
(or videos) and corresponding natural language text [92, 111]. The vision-
language models are one step closer to how humans perceive the world, learn
about it, and execute various tasks in it [92, 122]. In the following, we
describe two types of imaging analysis tasks that vision-language models can
perform:

• Image-text mixed tasks: These tasks reside at the intersection of nat-
ural language processing and computer vision fields and consist of ex-
tracting information from images and natural language text and find-
ing the relationships and patterns to link text and images [92, 123].
Image captioning, visual question answering, visual dialog, image or
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text retrieval given text or image, visual grounding, and image gener-
ation are a few image-text tasks undertaken by these foundation AI
models [92, 124]. Visual question-answering tasks typically require
a more detailed understanding of the image and complex reasoning
than a system producing image captions [124]. The recent founda-
tion models in image-text tasks include Contrastive Language-Image
Pre-Training (CLIP), A Large-scale ImaGe and Noisy-Text Embedding
(ALIGN), SimVLM, Florence, Flamingo, CoCa, and Clinical-BERT
[104, 105, 108, 106, 107, 125].

• Image processing tasks: Image classification, object detection, and seg-
mentation are the core visual recognition tasks in the field of computer
vision. Traditionally, these tasks were considered pure vision problems
without needing to include language information while learning these
tasks. However, CLIP and ALIGN models showed that language su-
pervision could play an essential role in pre-training vision-language
that can do various visual recognition tasks with zero-shot learning
[104, 105]. CLIP and ALIGN use noisy image-text data from the in-
ternet to enable large-scale pre-training of vision encoders. The state-
of-the-art foundation models include: (1) image classification - UniCL,
CLIP, and ALIGN [126, 104, 105], (2) object detection in a given image
- ViLD, RegionCLIP, GLIP, Detic, PromptDet, OWL-ViT, OV-DETR,
and X-DERT [127, 128, 129, 130, 131, 132, 133], and (3) segmenta-
tion of different objects in a given image - LSeg, OpenSeg, CLIPSeg,
MaskCLIP, DenseCLIP, and GroupViT [134, 135, 98, 136, 137, 138].

3.4. Training Foundation Models and Generative AI

Foundation models employ two key techniques in training: self-supervised
learning and generative training. The true potential of the enormous quan-
tity of unannotated data is only possible with supervised learning, without
the need to create annotations or labels using human effort. Examples of
such data include (1) text, images, and videos available online or (2) med-
ical records, diagnostic imaging, molecular data, and histopathology WSIs
available in hospital databases. During the training of foundation models,
the supervision signal is determined by the context of the input data, e.g.,
the BERT language model is trained to predict randomly removed words
from sentences or fill in the blank [93]. Sometimes, the models are shown
plausible and implausible pairs of images and corresponding texts. Thus,
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the model learns to associate image features with their correct text descrip-
tion [104]. This perspective generalizes the traditional close-set classification
AI models to recognize unseen concepts in real-world applications, such as
open-vocabulary object detection [92].

The generative training methods help foundation models learn the joint
or conditional probability distributions over training input data [13]. That
is, the trained foundation model will be able to accurately generate the input
data pattern similar to the ones used for training it. Generative training is
performed using one of two techniques, (1) de-noising or (2) auto-regressive.
During the training of the de-noising models, the input is corrupted with
noise, and the model is expected to produce noise-free input patterns [90].
The auto-regressive models, after training, can generate the input data piece
by piece, iteratively predicting the next element in a sequence given the
previous elements [139].

3.5. Challenges and Limitations of Foundation Models

Developing foundation models require massive datasets, computational
resources, and technical expertise [13]. Owing to their massive size, it may
not be possible to fit the parameters of a foundation model in the memory
of the largest GPU or a single computer. For example, a recent large lan-
guage model shared by Meta AI, LLaMA, has 65 Billion parameters and was
trained using 1.4 trillion tokens [120]. The enormous computational opera-
tions inside foundation models can result in unrealistically long training and
inference times. Foundation models require specialized software, hardware,
and inference algorithms to train and use [140].

“Hallucination” is a known limitation of generative AI, which refers to
mistakes in the generated text or images that are semantically, syntactically,
or visually plausible but are, in fact, incorrect, nonsensical, and do not refer
to any real-world concepts [141, 142, 15]. The accuracy and integrity of the
generated text and images may be challenging to establish using factual data
from verified sources [142]. One possible solution is to use an engineered sys-
tem like Bing Chat that also generates links to the actual websites, articles,
and reference material1. In some cases, the generative AI models can identify
their own mistakes [141]. Furthermore, the generative models are sensitive
to the form and choice of words, referred to as the “prompt.” A prompt may

1https://www.bing.com/
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consist of text, image(s), or symbol(s) inserted in the input of generative AI
so that the given task can be re-formulated as the original task for which the
model was trained [114, 141]. The future generative AI models may be less
sensitive to the precise prompt. However, the current models need “prompt
engineering” to produce the best results [114, 141]. Therefore, effectively
using a generative AI may require engineering an appropriate prompt by the
human user. Foundation models and generative AI also face other challenges
similar to tasks-specific AI models, including explainability, robustness, and
trustworthiness [88, 143, 13, 78, 144, 39, 79, 41, 142].

4. Transformers, Foundation Models, and Digital Pathology

This section presents recent work from the literature focused on using
Transformers (the core component of foundation models) in digital pathology.
We focus on the work where a single AI model based on Transformer architec-
ture is trained using large, diverse datasets to perform multiple tasks. Later,
we present our perspective on the potentially transformative role of foun-
dation model-based AI in digital pathology. Because of foundation models’
strong adaptation and scalability properties, they can be effectively trained
once and modified infinite times to suit various digital pathology tasks. Fig-
ure 4 presents a prospective framework for utilizing foundation models and
generative AI for various pathology tasks.

Transformers architecture has recently been modified to consume high-
resolution gigapixel WSI data [145]. The authors used a self-supervised hier-
archical learning mechanism on 33 cancer site data having approximately 105
million pathology images to predict nine slide-level tasks, including cancer
subtyping, survival, and unique morphological phenotypes [145]. Although
molecular procedures and analysis have led to remarkable discoveries, they
are usually time-consuming, expensive, and require multiple tissue samples.
Transformer-based foundation models can address these challenges by pre-
dicting the bulk RNA-seq directly from the whole slide images [22]. Sim-
ilarly, attention-based multiple instance learning has accurately predicted
biomarkers from cancer pathology slides in a self-supervised learning set-
ting [70]. The authors showed the performance of attention-based multiple
instance learning framework for predicting microsatellite instability and mu-
tations in BRAF, KRAS, NRAS, and PIK3CA in colorectal cancer pathol-
ogy slides [70]. To address the interpretability challenge of the AI model’s
decisions, a probabilistic perspective on attention-based multiple instance
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learning on WSI data has outperformed previous methods in matching the
pathologists’ annotations [146]. Such pre-foundation models can be scaled
to predict biomarkers directly from the histopathology slides belonging to
pan-cancer sites [147]. The Transformer model pre-trained on a large pub-
licly available pathology dataset can be fine-tuned under a weakly-supervised
contrastive learning scheme on smaller datasets. Wang et al. have shown that
such a training framework can outperform the state-of-the-art WSI classifica-
tion on three different tasks [148]. For the multimodal medical data analysis,
modality co-attention Transformers have been shown to outperform other
methods in survival predictions by fused learning on WSI data and genomic
sequences [149]. Moreover, Transformers are far more robust to adversarial
attacks and perturbations in digital pathology than CNNs because of the
more robust latent representation of clinically relevant information [79]. The
performance and robustness of Transformers-based models in various tasks
and modality settings have shown the prospective utilization of a single foun-
dation model for large-scale rollout involving multiple tasks.

Given the strong support for compositionality and multimodality and the
modular nature of the foundation models, image and language models can
be combined to share their learned representations as a larger foundation
model. Thus, a Transformer trained to interpret WSIs can be combined
with a trained language generation model (e.g., GPT) to create a vision-
language model. Such a model will interpret and analyze WSIs and generate
text reports based on the analysis. The same model can be augmented to
annotate relevant areas on the input image to support its finding in the
generated report. Finally, a conversational component can be added to allow
the model to interact with the pathologist to answer their question about
the model’s output.

The authors believe that a multimodal pathology foundation model capa-
ble of processing WSIs and natural language can be created using data avail-
able in the public domain, such as the National Cancer Institute’s The Cancer
Genome Atlas (TCGA) for genetic data, Clinical Proteomic Tumor Analysis
Consortium (CPTAC) for proteomics data, and The Cancer Imaging Archive
(TCIA) for imaging data [27, 28, 29]. The base model can be trained with
pan-cancer datasets and later fine-tuned for various organs, cancer types,
and use cases with only a few task-specific annotated examples. The base
pathology foundation model can be shared with the community, eliminating
the need to collect data, annotate, and train AI models from scratch for
each use case. A recent synopsis explores AI techniques for multimodal data
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fusion and disease association discovery in oncology data [150]. Quantify-
ing patterns across 17,355 H&E stained slides from 28 cancer types through
deep learning accurately classified cancer types and correlated learned fea-
tures with numerous recurrent genetic aberrations across considered cancer
types [151]. In the following, we build on the idea of training and sharing a
base pathology foundation model that can be adapted for research, clinical,
laboratory, and educational use cases in digital pathology.
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Figure 4: A prospective schematic layout of using foundation models and generative AI
for various digital pathology tasks is presented. In our view, other data modalities, e.g.,
diagnostic radiology or molecular data, if available, can be combined with pathology data
in the future to improve model performance.

4.1. Qualitative Image Analysis

A trained foundation AI model can be adapted for various pathology
image analysis tasks. The adaptation may not require any annotated data
(zero-shot learning) or may require only a handful of samples (few-shot learn-
ing). Examples include (1) separating the different types of cells in an image

24



and identifying the regions of interest, (2) identifying and counting the num-
ber of cells in a given image, (3) categorizing cells into different types based
on their appearance and features, (4) identifying the presence and extent
of cancerous tissue in an image, (5) assessing the severity and extent of a
disease by grading and staging tissue samples, (6) measuring the number of
specific proteins or molecules in a tissue sample to determine their potential
as biomarkers for disease, (7) predicting the likelihood of disease progression
or patient outcome based on the analysis of tissue samples, or (8) immuno-
histochemistry scoring.

Apart from adapting the base pathology foundation model to various
imaging tasks, we can use the same model for analyzing different types of
stains, images from different scanners, and noisy slides containing differ-
ent artifacts. Foundation models can leverage the multi-site cytology data
(cervix, kidney, breast, lung, thyroid, bladder, bone marrow, skin, etc.) to
perform various downstream tasks such as malignant cells classification, slide-
level stratification, cells location in cytological smears, and cell components
identification [152].

Going one step further, the image analysis performed by the AI can be
internally fed to the generative AI, allowing pathology report generation
directly from the image [153, 154]. Some sample pathology reports generated
using ChatGPT (March 14 update) are presented in Fig. 5A, B, and C. These
reports were generated by text prompt only without providing any image to
ChatGPT as it cannot process image data.

AI supported by large models can reduce pathologists’ workload and inter-
rater variability while improving the quality and consistency of pathology
reports [147]. The image analysis and report generation pipeline can serve
as the “first pair of eyes” and potentially help pathology labs with workload
and staffing shortages. AI model adaptation and fine-tuning allow it to learn
from its mistakes and update itself under the guidance of the pathologist(s).
Thus promoting the AI from just a data processing pipeline to an assistant
who will, over time, learn to help the users perform their tasks efficiently.

4.2. Image Synthesis, De-noising, and Virtual Staining

Publicly available Generative AI has yet to show plausible pathology im-
age generation capabilities. It has been recently shown that, despite being
state-of-the-art at the time of assessment, the text-guided diffusion model
(GUIDE) lacked a good depiction of the style and contents of medical im-
ages [155]. However, we argue that there are enough pathology image data in
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Pancreatic Biopsy Report

Breast Biopsy ReportBrain Surgery Report A B

C DPancreatic Biopsy Description

Figure 5: Three different pathology biopsy reports generated by ChatGPT are presented
in sub-figures A, B, and C. The AI was prompted using the following text: “Generate
a sample pathology report for [organ name].” The right bottom image (sub-figure D)
represents a lay-person description of the pathology report generated by ChatGPT using
the pathology report presented in sub-figure C.
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the public domain to train pathology image generation models using GUIDE,
Stable Diffusion, or Dall-E 2 as the starting point. A well-trained pathol-
ogy image generation AI can address various research and clinical challenges
including (1) de-noising digitized slides to remove noise and artifacts and
normalize the image to a standard color and tone, effectively making the
task of image analysis pipeline easy and less prone to error (2) virtual stain-
ing - generating images with different staining techniques without requir-
ing additional physical samples, helping pathologists compare and contrast
the effects of various stains and facilitate more accurate diagnoses [32], (3)
super-resolution imaging - using AI synthesis techniques to generate super-
resolution images from low-quality and noisy digital slides, aiding patholo-
gists in examining fine details and structures that may not be visible in the
original images due to noisy or erroneous digitization process [5], (4) simu-
lating disease progression - generating images simulating the progression or
regression of pathological conditions, thus providing pathologists with a bet-
ter understanding of disease evolution and enabling more informed treatment
planning, (5) education and training - create diverse and realistic examples
for educational purposes, thus help trainee pathologists gain experience in
diagnosing a wide range of conditions and improve their diagnostic skills
without relying on actual patient samples [156], and (6) synthesizing images
to study the effects of various factors on disease presentation, such as genetic
mutations, environmental factors, or treatment options, thus contribute to
a better understanding of disease mechanisms and the development of more
effective therapies.

4.3. Detecting Zebras (New Disease Identification)

Foundation models can be adapted to identify deviations from the norm,
which may indicate potential anomalies, such as abnormal cell structures,
lesions, or other abnormalities. Anomaly detection of finding zebras goes
beyond regular tasks of identifying disease sub-type or grading. This use
case aims to identify and report patterns never seen in the training data
to improve the accuracy and efficiency of identifying unusual or unexpected
events. Transformer-based models can learn to directly predict the bulk
RNA-seq from WSI and simultaneously output the WSI representation [22].
Such models can augment pathologists’ expertise and provide more accurate
and timely diagnoses.

27



4.4. Patient Engagement

Generative AI can help pathologists, who are the “doctor’s doctor,” en-
gage directly with the patients by bringing them to the front line without ad-
ditional time or resource commitment. Language models can generate more
approachable and accurate descriptions and explanations of the pathologist’s
findings for the patients. Image generation models can create annotated im-
ages to depict the disease visually. In Fig. 5D, we present the description
of a biopsy report generated by GPT-4. The text is aimed to explain the
pathology biopsy report (presented in Fig. 5C) to a non-medical person. In
addition, they can educate the patient about the disease entity just diagnosed
by the pathologist and possible treatment options.

4.5. Education and Training

Pathology education is currently powered and driven by virtual and dig-
ital transformations and is swiftly adapting to the advancements offered by
AI [156]. Generative AI can retrieve and integrate knowledge from various
sources, such as textbooks, and scientific articles, providing a comprehensive
view of the state of knowledge. Pathology-focused ChatGPT-like models
can answer pedagogical questions quickly, such as the definition of terms or
recent advancements reported in the literature.

Conversational AI, such as ChatGPT and its variants, can solve higher-
order reasoning questions. ChatGPT has the comparative relational level of
accuracy in pathology, as noted by the responses shown in Figure 5. Hence,
students and academicians have the opportunity to adapt to this emerging
technology and use it for solving reasoning-type questions. Further evolution
of such conversational tools needs to be critically analyzed by the specialists,
such as pathologists, for their efficacy and acceptability.

4.6. AI-Driven Standardization in Digital Pathology Workflow

Foundation models and generative AI can help standardize digital pathol-
ogy by addressing various aspects of the diagnostic process, such as image
acquisition, analysis, interpretation, and reporting.

1. Image preprocessing and normalization: AI models can correct for in-
consistencies in image acquisition, such as variations in lighting, stain-
ing, and scanning parameters. By automatically adjusting for these
factors, AI can ensure that images are more consistent and comparable
across laboratories and scanners.
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2. Automated feature extraction and quantification: AI-based tools can
extract and quantify relevant features in images in a standardized and
reproducible manner. This can include cell counting, morphological
measurements, and biomarker quantification, reducing the variability
that may arise from manual or semi-automated methods. A human
operator will need to approve AI-generated features.

3. Computer-aided diagnosis: AI-driven algorithms can provide a second
reader opinion or decision support for pathologists, reducing diagnostic
variability and errors. By learning from large datasets and incorporat-
ing best practices, AI can help standardize the diagnostic process, and
improve the overall quality of diagnoses.

4. Quality control: AI can help identify inconsistencies in staining tech-
niques, equipment, and reporting protocols, enabling better standard-
ization and quality assurance across laboratories. By monitoring and
benchmarking these factors, AI can improve the overall quality of dig-
ital pathology services.

5. Patient timeline and synoptic reporting: AI models can process and
summarize the patient visits and interventions spread over multiple
time-points in the form of patient timeline and EMR summary of care.
These models may also generate synoptic reports culled from the non-
structured data in the pathology reports.

6. Reporting and data integration: AI-driven language models can assist
in the standardized extraction of information from pathology reports
and facilitate the integration of this information with other clinical and
research data. The AI model can also provide a degree of certainty to
the diagnostic information extracted from pathology reports [157]. This
can help improve the consistency, certainty and comprehensiveness of
data available for decision-making and research purposes.

7. Education and training: AI can create standardized training materials
and assessment tools for pathologists, ensuring that they are educated
and evaluated based on best practices and the latest advancements in
the field.

8. Interoperability and data sharing: AI can facilitate better communica-
tion and collaboration among laboratories and healthcare providers by
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providing a common platform for data analysis, visualization, and de-
cision support. The AI language models can provide the translation of
a pathology report between English and other languages for communi-
cation and collaboration among pathologists in different regions of the
world. This can contribute to standardizing workflows and practices
across the digital pathology ecosystem.

5. Conclusion

Foundation models and generative AI have the potential to transform
digital pathology, leading to faster and more accurate diagnoses, improved
patient outcomes, and a better understanding of disease mechanisms, along
with reducing workload for pathologists, helping standardize lab workflow,
and contributing to the education and training. This review presented an
overview of generative AI and foundation models and their potential role
in digital pathology. We demonstrated how AI as a field has grown from a
narrow problem-solving technique to a comprehensive tool for language un-
derstanding, image analysis, data generation, question-answering, and con-
versation. Finally, we present our perspective on the future role of generative
AI and foundation models in digital pathology and future use cases where
generative and conversational AI and foundation models can have a trans-
formative impact in digital pathology. Adapting and integrating generative
foundation models in traditional diagnostic methods can provide a more com-
prehensive and accurate assessment of pathology specimens while enabling
the development of personalized treatments for patients. However, genera-
tive AI and foundation models have associated challenges and limitations.
Further research and development efforts are needed to fully realize the cur-
rent AI wave’s potential to ensure their safe and effective implementation in
clinical practice.
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