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Abstract
The human microbiome is essential for the correct functioning of many host physiological processes, including met-
abolic regulation and immune responses. Increasing evidence indicates that the microbiome may also influence can-
cer development, progression, and the response to therapy. Although most studies have focused on the effect of the
gut microbiome, many other organs such as the skin, vagina, and lungs harbor their own microbiomes that are dif-
ferent from the gut. Tumor development has been associated with dysbiosis not only in the gut but also in the tissue
from which the tumor originated. Furthermore, the intratumoral microbiota has a distinct signature in each tumor
type. Here, we review the mechanisms by which the organ-specific microbiome can contribute to carcinogenesis:
release of toxins that cause DNA damage and barrier failure; alteration of immune responses to create a local inflam-
matory or immunosuppressive environment; and regulation of nutrient levels in the tumor microenvironment
through metabolite production and consumption. Solving the puzzle of how the microbiome influences the carcino-
genesis process and treatment response requires an understanding of the two ways the microbiome can interact with
cancer cells and the tumor microenvironment: through systemic effects exerted by the gut microbiota and local
effects of the intratumoral microbiota.
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Cancer and the microbiome

Cancer is a major health threat and follows only cardio-
vascular disease as a leading cause of death worldwide
[1,2]. Cancer is a multifactorial disease; although much
focus has been placed on genetic causes, epidemiologi-
cal studies have shown that a high percentage are linked
to environmental factors [3]. For example, human papil-
loma virus infection and tobacco smoking are responsi-
ble for up to 90% of cervical squamous cell carcinomas
and lung cancers, respectively [4]. Among the extensive
list of environmental risk factors, the commensal micro-
biota is emerging as a major modulator of carcinogene-
sis, immune response, and treatment efficacy [5–7].

The human microbiota is defined as the community of
all microorganisms living in association with the human
body. It contains members of different kingdoms, includ-
ing bacteria, archaea, fungi, small eukaryotes, and
viruses. This collection of microbes, their genomes, the
metabolites they produce, and the proteins they express
are known as the microbiome. The number of microbial
genes alone is estimated to be 100 times greater than
the human genome [8], so it is no surprise that the micro-
biome carries out key functions in the human body
[9,10]. The complex microbiome–host ecosystem is the

result of millions of years of coevolution, establishing
what has been described as the ‘super-organism’ [11].
Microbial colonization of the human body begins at birth
and develops throughout childhood until reaching its
adult composition [12,13], a process that depends on
both external (lifestyle) and internal factors (genetics or
immune system) [14]. The microbiome is beneficial to
humans in many ways, including its fundamental contri-
bution to the development and education of the immune
system [15]. However, failure to maintain microbiome–
host homeostasis is directly and closely related to many
diseases [13,16–19].
It is estimated that individual microbial pathogens

contribute to cancer development in approximately
15–20% of total cases [20]. However, recent studies
have suggested that cancer initiation and progression
are impacted not only by single pathogens, but also by
global changes to the microbiome (referred to as dysbio-
sis) [21,22]. The interactions between the microbiome
and host during cancer are complex. Animal studies
using germ-free mice or antibiotics to deplete the intesti-
nal microbiota have illustrated the role of the micro-
biome in promoting different types of cancer [23–25].
On the other hand, microbial antitumoral effects have
also been reported [21,26], with several bacterial toxins
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and some pathogen-associated molecular patterns that
prevent tumor growth by activating the immune system
[26]. All these findings highlight the need for new types
of microbiome intervention that encourage the expan-
sion of beneficial over pathogenic microorganisms.
Several lifestyle factors associated with cancer risk have

been shown to act viamicrobiota-relatedmechanisms. The
Western diet, and specifically the consumption of pro-
cessed meats, is associated with different types of cancer
[27], and the microbiota has been shown to be essential
in mediating some of the carcinogenic effects. Heme iron,
the pigment of red meat, induces epithelial damage in the
colon and leads to hyperplasia only in the presence of
gut microbiota [28]. Sulfur compounds used to preserve
processed meat are metabolized by sulfur-reducing bacte-
ria present in the colon to hydrogen sulfide, a metabolite
implicated in carcinogenesis through numerous mecha-
nisms [29]. Apart from diet, epidemiological studies sug-
gest that obesity is a risk factor for certain types of
cancer [30]. Recently, the obesity-associated gut micro-
biota has been proposed to underlie some aspects of this
relationship. Evidence indicates that changes in gut micro-
biota induced by obesity cause a senescence-associated
secretory phenotype in hepatic stellate cells, which secrete
inflammatory and tumor-promoting factors in the liver
[31]. These alterations in the gutmicrobiota have also been
linked to histone methylation and acetylation associated
with signaling pathways central to the development of
colon cancer [32]. Finally, aspirin and other non-steroidal
anti-inflammatory drugs have been suggested to contribute
to cancer risk reduction [33], in part due to alteration of the
microbial communities [34]. Findings from a clinical trial
indicated a possible beneficial effect of aspirin on the gut
microbiota, reducing several bacteria linked to inflamma-
tion and colorectal cancer (CRC) [35]. Similar results have
been reported in an animal study [36], which also revealed
that aspirin’s chemopreventative effects depend on the gut
microbial composition. Therefore, the interplay between
the microbiome and cancer is not simple, and it is affected
not only by the genetic landscape, but also by many epide-
miological factors, including diet, lifestyle, and aging,
among others. Moreover, all these factors influence the
microbiome in a continuous manner, and one limitation
of microbiota studies in cancer is the use of dichotomy
models, i.e. antibiotics versus control. Given this intricate
relationship, it has been proposed that interdisciplinary
approaches, such as molecular pathological epidemiology
[37], are necessary to finally establish the role of themicro-
biome in cancer [38,39].
The vast majority of the human microbiota resides in

the gastrointestinal tract, particularly in the colon, and it
can interact both locally and systemically with cancer
cells. This may be why the gut microbiome is the most
studied, and the model system to understand the
microbiome–host relationship [22]. The identification of
microorganisms in other parts of the body has been chal-
lenging due to their low biomass. Indeed, other organs,
such as the lungs or breast tissue, were considered to be
sterile until a few years ago [40,41]. Together, this has
led to a disregard of the role of the local (organ-specific)

microbiome in carcinogenesis. In recent years, the scien-
tific community has made a big effort to detect and char-
acterize the microorganisms present in healthy organs
and tissues. Specific microbial populations have been
described for many organs [40–45], revealing a different
microbiome signature for each [46–48]. Thus, the spe-
cific local microbiome probably plays a key role in the
development of cancer in organs distant from the gut.

Intratumoral microbiota, a new component of the
tumor microenvironment (TME)

Even though they show extensive diversity, it has been
proposed that all tumors share some key alterations to
cell physiology, such as sustained proliferative signaling
and resistance to cell death, which ultimately lead to the
accumulation of mutations and carcinogenesis [49].
Another common feature of tumors is that they modify
their immediate environment through paracrine signal-
ing, creating a particular niche that is required for the
proliferation of cancer cells [50–53]. The TME is made
up of all the non-tumor cells and soluble molecules sur-
rounding the tumor. The classical vision of the TME
includes immune cells, vascular and lymphatic endothe-
lial cells, fibroblasts, adipocytes, pericytes, and factors
secreted by both tumor and non-tumor cells [54,55].
The microbiome is a newly recognized component of
the TME [56]. In order to really understand its influence
on cancer, it is important to distinguish between the two
ways the microbiome can shape the TME and interact
with cancer cells: systemically or locally (Figure 1).

From a distance, the microbiota living in the gastroin-
testinal tract can modulate the fate of tumors arising in
other organs. Metabolites and immune signals produced
by gut microbiota enter the circulation and reach tumors
distal to the gut [57,58], becoming a part of their TME.
These microbial metabolites may interact directly with
cancer cells or may regulate carcinogenesis by interact-
ing with other components of the TME, participating in
immune responses or angiogenesis [59–63]. Locally, a
direct effect of the lung microbiome on lung cancer has
been established [24]. In pancreatic cancer, the bacterial
diversity in tumor samples from pancreatic ductal adeno-
carcinoma patients correlates with survival [64,65];
long-term pancreatic ductal adenocarcinoma survivors
had higher intratumoral bacterial diversity and the
microbiome signature was significantly different from
that of short-term survivors. Interestingly, three enriched
genera were identified in long-term survivors (Sacchar-
opolyspora, Pseudoxanthomonas, and Streptomyces),
which had a positive correlation with the number of
CD8+ T cells, suggesting their role in the antitumoral
immune response [65]. Moreover, a broad study analyz-
ing seven human tumor types revealed a distinct micro-
biome composition in each, and that most bacteria
were localized intracellularly within cancer and immune
cells of the TME [66]. These findings indicate a strong
physical relationship between microorganisms and
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cancer cells at a local level. In agreement with this,
human CRC shares its microbiome with its metastatic
lesions in the liver, suggesting that the microbiome
travels with the primary tumor cells to distant sites.
Importantly, the microbiome was linked to the malig-
nancy of the metastatic lesions [67]. In breast cancer,
the intratumoral microbiome differs based on type [68]
and stage of cancer [69]. Beyond bacteria, pancreatic
colonization by the fungal genus Malassezia promotes
tumorigenesis via activation of mannose-binding lectin
in mice and humans [70]. Additionally, viral infections
can influence the susceptibility to develop certain can-
cers by integration of oncogenes into the human genome
[71–73].

Understanding the role of the microbiome within a spe-
cific type of tumor requires study of the combined local
and long-distant effects. The systemic effects of metabo-
lites and small molecules produced by the gut microbiota
on cancer have been the topic of many excellent reviews
[74–76]. Instead, we will explore the local effects of the
organ-specificmicrobiome on carcinogenesis, with a focus
on the bacterial populations. The role of fungal and viral
infections has been widely reviewed elsewhere [77–79].

Contribution of the intratumoral microbiota to
carcinogenesis

Barrier failure
A cooperative relationship between the microbiota and
host is possible due to mechanisms that tightly regulate
their intercellular interactions. One mechanism is the
use of barriers to physically separate microbial and host

cells, preventing uncontrolled systemic spread of poten-
tially dangerous pathogens [80]. Such barriers are found
in the skin [81] and the gastrointestinal [82], respiratory
[83], and urinogenital tracts [84], and are composed of
epithelial linings. With the exception of the skin, they
also contain a mucosal layer, which serves as the pri-
mary point of interaction between microorganisms and
human cells [85]. Within these barriers, organ-specific
cells (e.g. Paneth cells in the gut) secrete antimicrobial
peptides to control the microbial population [86]. More-
over, the microbiome also participates in this defensive
role [87]. In the vaginal mucosal surface, Lactobacillus
spp. improves barrier function by acidification of the
local microenvironment, and by producing metabolites
that increase antimicrobial cytokine levels [88]. The skin
microbiome plays a role in control of local immune
responses through the modulation of resident lympho-
cytes and T cells [89]. The commensal microbiome also
protects the host against local pathogen infections
through the release of antimicrobial peptides [90].
Failure to maintain proper barrier functions has been

linked to a variety of diseases, including cancer (Figure 2)
[91]. Several events may lead to a breach in epithelial bar-
riers, including genetic mutations affecting the structure
and function of the barrier [92], infection by pathogens,
dysbiosis [93], inflammation, or carcinogenesis [94]. Bar-
rier disruption often results in translocation of microorgan-
isms to sterile compartments, promoting dysbiosis and the
initiation of the host immune response [95]. At the same
time, inflammation-induced barrier damage in the gut
may also disturb microbial–host homeostasis, triggering
dysbiosis [96,97]. Determination of the causal factor is
challenging due to the interdependence between these
two events [94,98].

Figure 1. The microbiome in the TME. The microbiota can shape the TME systemically and locally. Metabolites and signaling molecules syn-
thesized by the gut microbiota (purple dots) enter the circulation and travel to distant organs (yellow arrow), where they can feed or interact
with cancer cells and other cells in the TME. Moreover, the microbiota is also localized within tumor and immune cells, forming part of the
TME together with macrophages, dendritic cells, T cells, myeloid-derived suppressor cells, natural killer cells, cancer-associated fibroblasts,
pericytes, adipocytes, and blood vessels. The influence of the microbiome in carcinogenesis is a combination of both effects: the systemic
effects exerted by the gut microbiome and the local effects from the intratumoral microbiome.
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Invasion by pathogens and dysbiosis can both pro-
mote epithelial barrier disruption, creating a proinflam-
matory milieu that favors carcinogenesis [99]. This has
been extensively studied in the context of CRC [100],
where bacteria use different mechanisms to break
through epithelial barriers and invade the host [93]. Path-
ogenic bacteria can adhere to the epithelium using pili
and surface adhesive molecules, promoting an immune
reaction and disruption to the barrier [99]. Fusobacter-
ium nucleatum promotes CRC by generating an inflam-
matory environment via NF-κB activation [101] and
direct modulation of Wnt-β-catenin signaling [102].
This signaling pathway is also modulated by other bacte-
ria, such as Bacteroides fragilis andHelicobacter pylori,
associated with CRC and gastric cancer, respectively
[103]. The cell–cell adhesion molecule E-cadherin is a
common target of F. nucleatum and the B. fragilis
toxin. Through different mechanisms, both disrupt the
E-cadherin junctions in epithelial cells, increasing endo-
thelial permeability and allowing bacteria to cross the
intestinal barrier [104,105]. Dysbiosis in the vaginal
microbiome can also damage the vaginal epithelial bar-
rier and modify the local immune response, which has
been linked to an increased susceptibility to sexually
transmitted infections [106,107]. The role of barrier fail-
ure in vaginal cancer has been proposed, but mechanistic
studies are lacking [108]. Finally, a relationship between
skin barrier failure and skin cancer has been established,
but in this case, the skin microbial contribution is
completely unknown [109,110].

Microbial toxins
Failure of the barriers mentioned above allows direct
interaction between bacterial toxins and epithelial and

immune cells, which can compromise the stability of
the host’s DNA (Figure 2). Released toxins can interact
directly with host DNA and increase the occurrence of
oncogenic mutations. Colibactin is a genotoxin that has
the ability to induce double-strand breaks in host DNA
[111]. It is produced by the B2 phylogenetic group of
Escherichia coli, which possess the 54-kb pks genomic
island. The pks island encodes a polyketide–peptide
hybrid that is finally responsible for colibactin synthesis
[112]. The expression level of pks+ E. coli has been cor-
related with the development of CRC [113], and its pres-
ence was significantly higher in CRC patients compared
with healthy controls [114,115]. A study using human
intestinal organoids recently showed a distinct muta-
tional signature after exposure to pks+ E. coli and, more
importantly, the same mutational signature was detected
in human cancer genomes, predominantly in CRC [116].
Moreover, a second study corroborated these findings
using human colorectal cells infected with pks− or pks+

E. coli [117]. These two studies provided the first evi-
dence of an etiological role of a bacterial genotoxin in
human cancer. Other bacteria, such as Klebsiella pneu-
moniae, Enterobacter aerogenes, and Citrobacter
koseri, also harbor pks islands in their genomes [118].
Although K. pneumoniae has been linked to colitis in a
mouse model [119], a promoting role in cancer has not
been determined. Escherichia coli was also found to be
one of the most prevalent bacterial species in breast
tumors [120]. In that study, E. coli isolated from breast
tumor tissue was shown to induce double-strand DNA
breaks in HeLa cells. Furthermore, Staphylococcus epi-
dermis isolated from the same samples induced similar
DNA breaks [120]. Cytolethal distending toxin (CDT)
is another well-known genotoxin that is produced by a
broad group of Gram-negative bacteria that colonize

Figure 2. Contribution of the intratumoral microbiota to carcinogenesis. Through the release of toxins, microorganism-associated molecular
patterns, and metabolites, the intratumoral microbiota can influence cancer development and progression in several ways: (I) disrupting cell–
cell adhesion and increasing barrier permeability, which leads to barrier failure; (II) modulating immune responses by increasing the levels of
signaling molecules, IL, and activating some immune populations to create an inflammatory or immunosuppressive environment; (III) dam-
aging DNA and creating genome instability; and (IV) regulating the metabolism of cancer cells (and other cells in the TME) by competing for
nutrients or cooperating through waste removal and increasing the levels of some metabolites used by cancer cells.
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the gut [121]. The CDT protein is made up of three
subunits: CdtA and CdtC are responsible for the target
cell internalization of CdtB, the subunit that reaches the
nucleus and generates single- and double-strand breaks
[122–124]. Although the role of CDT in the etiology of
human cancer is not clear, CDT-producing bacteria
have been shown to induce tumorigenesis in different
CRC mouse models. In A/JCr mice, the CDT produced
by Helicobacter hepaticus played a critical role in the
induction of hepatocarcinogenesis [125]. A study using
germ-free ApcMin/+ mice colonized with a human clin-
ical isolate of Campylobacter jejuni indicated that
CDT production by this strain was involved in CRC
development [126]. Another CDT-producing bacterium
associated with human CRC is E. coli, which is over-
represented in human CRC samples [127], although
further investigation is needed to determine the mecha-
nism. Additionally, some strains of E. coli release cyto-
toxic necrotizing factor 1, which can induce several
alterations, including protection of epithelial cells from
apoptosis and promotion of cellular mobility [128]. The
stomach cancer risk caused by different strains of
H. pylori in the gastric epithelium has been linked
(in part) to several toxins (cytotoxin-associated gene
A protein; vacuolating cytotoxin; urease and several
others) that promote chronic inflammation, oxidative
stress, and host DNA damage [129]. Microcystin is a
toxin secreted by the phylum Cyanobacteria and has
been detected in non-small cell lung cancer patients
[130]. In an in silico analysis, the presence of microcys-
tin was related to decreased CD36 and increased
PARP1 levels, suggesting a role of this toxin in inflam-
matory processes in lung carcinogenesis [130].

Apart from bacterial toxins that interact directly with
host DNA, various bacteria also have the ability to gen-
erate reactive oxygen species (ROS), which are known
to cause oxidative DNA lesions and carcinogenesis
[131]. Many species of the Bifidobacterium, Lactobacil-
lus, and Streptococcus genera that colonize the oral cav-
ity can generate hydrogen peroxide, which increases the
risk of DNA damage [132]. Other oncogenic molecules
produced by the oral microbiota include hydroxy ethyl
and hydroxyl radicals, subproducts of ethanol metabo-
lism carried out by some species of the Streptococcus
genus [133]. Oral microbial dysbiosis with increased
representation of all these genera has been associated
with oral cancer [134]. The production of extracellular
superoxide by Enterococcus faecalis in the gut has been
described as a critical step to promote CRC in the IL-
10−/− mouse model. In this model, an increase in super-
oxide levels induced 4-hydroxy-2-nonenal production
by macrophages, a molecule that led to genome instabil-
ity [135].

More experiments are needed to clarify the direct role
of DNA damage by bacterial toxins in the induction of
cancer. It has been suggested that the primary role of
these toxins is not the generation of oncogenic mutations
in host DNA, but rather the consequent activation of the
immune system that establishes a vulnerable environ-
ment [136].

Microbial metabolites
The microbiota interacts directly with host cells through
the exchange of metabolites and signaling molecules. In
this bidirectional relationship, metabolites produced by
host cells affect the dynamics of microbial communities
and, at the same time, microbial metabolites are essential
for the correct functioning of metabolic pathways in host
cells. Regarding cancer, many microbial metabolites
have been classified as carcinogenic, with three main
mechanisms by which they affect tumor development:
(1) promotion of DNA damage; (2) immune system
modulation; or (3) alteration of metabolite availability
(Figure 2). In addition to circulating metabolites from
the gut microbiota [137], microbes that reside within
tumors of other organs are able to synthesize a multitude
of metabolites. However, the vast majority of studied
mechanisms have been in the context of the gut micro-
biome and CRC development.

DNA damage
Many microbial metabolites are known to induce host
DNA damage, either by direct interaction with DNA or
by increasing ROS generation. Sulfur-reducing bacteria
present in the colon have the ability to produce hydrogen
sulfide through the metabolism of different molecules.
Hydrogen sulfide has been shown to induce direct
radical-associated DNA damage [138] and oxidative
DNA damage through an increase in ROS [139]. Hydro-
gen sulfide can be generated by cysteine degradation by
F. nucleatum and E. coli, taurine breakdown by Bilo-
phila wadsworthia and general sulfonate degradation
byDesulfovibrio desulfuricans [139,140]. Increased rel-
ative abundance of these bacteria has been linked to
CRC [139]. In the oral cavity, the increase in these bac-
teria and others from the Bacteroidetes and Firmicutes
phyla has been associated with oral squamous cell carci-
noma through the same mechanism [132]. Deoxycholic
acid (DCA), a secondary bile acid synthesized by the
gut microbiota, has been shown to induce DNA damage
[141] and promote carcinogenesis in CRC mouse
models [142], inducing mitochondrial oxidative stress
and increasing ROS levels [143]. Alcohol consumption
is one of the main risk factors of oral cancer, and the pro-
duction of its metabolite acetaldehyde plays a role in this
association [144]. Many species of bacteria in the oral
cavity and gut are involved in alcohol metabolism, and
those expressing the enzyme alcohol dehydrogenase
are the main source of acetaldehyde in the oral cavity
[145]. The concentration of this metabolite is especially
elevated in the oral cavity due to the limited number of
bacteria that can convert acetaldehyde to acetate [146].
Two of the main reasons acetaldehyde is considered to
contribute to oral cancer are its capacity to damage mito-
chondria (and thereby increase ROS) and its inhibition
of the DNA repair system [146]. Several oral Streptococ-
cus spp., including S. gordonii, S. mitis, S. oralis,
S. salivarius, and S. sanguinis, are involved in this
metabolism and are increased in oral cancer [132].
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An in silicometabolic analysis of the microbiota over-
represented in breast cancer tissue predicted an increase
in levels of the enzyme β-glucuronidase [147]. An
increase in this enzyme activity has also been reported
in patients with CRC, thought to be responsible for the
production of reactive intermediates from 2-amino-
3-methylimidazo [4,5-f] quinoline that induce DNA
damage in colon cells [148].

Modulation of immune response
The immune system can be modulated by metabolites
produced by microorganisms, eliciting proinflammatory
or immunosuppressive responses. It is important to men-
tion that although all the metabolites and toxins released
by bacteria that damage DNA also induce an immune
response, there are also metabolites that can directly
impact immune cells. Short-chain fatty acids produced
from gut microbe metabolism, such as acetate, butyrate,
and propionate, are known to exert an anti-inflammatory
response. Animal studies have shown that in the colon,
butyrate interacts with epithelial cells to increase IL-18
expression [149]. Butyrate also interacts with intestinal
macrophages and dendritic cells, inducing the anti-
inflammatory molecules IL-10 and Aldh1a, which trig-
ger differentiation of naïve T cells into Treg cells and
suppression of Th17 cells [149]. Moreover, butyrate
may stimulate Treg induction by enhanced histone acety-
lation of colonic CD4+ T cells and epigenetic regulation
mechanisms [150]. Overall, this creates an environment
that prevents inflammation and protects the colon
against carcinogenesis. Many butyrate-producing bacte-
ria belong to the phylum Firmicutes [151], and analysis
of the colon microbiota revealed a decrease in these bac-
teria in patients with colon cancer [152]. Similar mecha-
nisms have been associated with propionate and its
immunosuppressive and antitumoral effect on colon
cancer [153]. Synthesis of short-chain fatty acids by
the skin microbiome also affects the local immune sys-
tem. The production of propionate and valerate by the
skin microbe Propionibacterium acnes inhibited histone
deacetylase activity and induced cytokine expression in
response to Toll-like receptor (TLR) ligands [154,155].
However, there is no clear relationship between these
metabolites produced by the skin microbiome in skin
cancer. Secondary bile acids have the opposite effect
on intestinal inflammation. Although low-concentration
secondary bile acids may decrease proinflammatory
cytokine levels [156], an increased level of DCA and
lithocholic acid is considered a risk factor for intestinal
inflammation and colon cancer [157]. The metabolites
DCA and lithocholic acid provoke inflammation as a
consequence of DNA damage and also by increasing
levels of IL-6 and TNF [158]. A recent bioinformatic
study aiming to understand the interplay between vagi-
nal dysbiosis and inflammation in cervical cancer found
several metabolites modulated by the local microbiota
that were associated with inflammation [159]. Among
them, an increase in glycochenodeoxycholate and carni-
tine metabolism have been predicted to be associated

with genital inflammation in cervical cancer patients.
Indeed, the abundance of these metabolites correlate
negatively with Lactobacillus, a genus that colonizes
the healthy vaginal microbiome but it is drastically
reduced in cancer patients. Moreover, high levels of
adenosine and cytosine correlated negatively with
inflammation and positively with Lactobacillus [159].
The protective role of adenosine against inflammation
has been shown previously [160].

Metabolism of cancer cells and other cells in the TME
Local nutrient availability is an environmental pressure
that modulates the metabolic reprogramming of cancer
cells [161]. Thus, metabolite production and consump-
tion by the intratumoral microbiota is probably an
important factor shaping the metabolic phenotype of
cancer cells as well as other cells in the TME.

Comparing the breast microbiota in patients with
breast cancer and those with benign breast disease
showed that not only did the bacterial communities dif-
fer, but also the metabolism of the bacteria. Bioinformat-
ics predicted an increase in cysteine and methionine
metabolism, glycosyltransferases, and fatty acid biosyn-
thesis in the microbiota present in benign breast tissue.
In contrast, bacteria colonizing breast tumors (enriched
inFusobacterium, Atopobium,Hydrogenophaga,Gluco-
nacetobacter, and Lactobacillus) showed a decrease in
inositol phosphate metabolism [48]. Levels of the hor-
mone estrogen are strongly associated with the develop-
ment of breast cancers expressing the estrogen receptor,
and the breast microbiome is thought to increase the
availability of estrogen in breast tissue [147]. In the
lungs, differences in the microbial population have been
associated with an increase in specific metabolites. A
study comparing the lung microbiome between HIV-
infected and non-infected individuals found that bacteria
from Caulobacteraceae, Staphylococcaceae, Nocardioi-
daceae families, and the Streptococcus genus were
linked to alterations in the glycerophospholipid and line-
olate metabolic pathways in the lung [162]. Enrichment
of the Prevotella and Veillonella genera in the lung
microbiota correlated with high levels of palmitoleic
acid, arachidonic acid, 4-hydroxybenzoate, and glycerol,
whereas enrichment of Pseudomonas, Sphingomonas,
Chryseobacterium, Burkholderia, and Janthinobacter-
ium associated with glyceric acid, isothreonic acid, ery-
thritol, threitol, cholesterol, and fucose-rhamnose [163].
A pathogenic metabolic relationship has been established
between Pseudomonas aeruginosa and macrophages in
the lungs. Pseudomonas aeruginosa exploits macro-
phages to produce itaconate, a metabolite that promotes
biofilm formation and resistance to antibiotic treatments
[164]. Thus, the lung dysbiosis known to accompany
lung tumors is expected to play an essential role in the
metabolic reprogramming of cancer and non-cancer cells
in the TME. The vaginal microbiome composition has
also been found to impact the cervicovaginal metabo-
lome. Bioinformatic analysis predicted that bacterial dys-
biosis found in cervical cancer patients, shifting from
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Lactobacillus dominance to an enrichment in Gardner-
ella, Prevotella, Streptococcus, and Atopobium spp., per-
turbed amino acid and nucleotide metabolism [159].

Microbial metabolites have also been proposed to
influence pH in the TME [165]. In the oral cavity, sev-
eral bacteria from the Lactococcus, Bifidobacterium,
Streptococcus, Leuconostoc, and Pediococcus genera
are known to release lactic acid. This and other acids
may decrease the pH in the TME, creating a favorable
environment for tumor progression and metastasis
[165]. Interestingly, most of the bacteria isolated from
oral squamous cell carcinoma patients belong to aciduric
species [166]. Furthermore, the metabolic activity of
bacteria can interfere with therapeutic treatments by
affecting drug availability and toxicity. For example,
the β-glucuronidase enzymes of gut bacteria metabolize
irinotecan, a chemotherapeutic agent commonly used in
CRC treatment, thereby decreasing its effectiveness and
leading to severe side-effects [167]. The addition of
β-glucuronidase inhibitors to irinotecan treatment has
been shown to alleviate many side-effects and improve
its antitumoral efficacy [7].

At the local level, correlation of tumor development
with metabolic communication between microbes and
cancer cells is weak, and more experimental evidence
is needed in order to determine its relevance. Interest-
ingly, examples in the literature have reported opposite
functions for the same bacterial genus or even the same
metabolite in different tumor types. This highlights the
need to study not only the bacterial communities within
the tumor, but also bacterial metabolism and its impact
on cancer cells [120].

Microbial-associated molecular pattern and
immune response

Apart from metabolic interactions, the host senses the
microbiota via pattern recognition receptors, which con-
trol the immune response to microorganism-associated
molecular patterns (Figure 2). Microbial recognition by
TLRs, a family of pattern recognition receptors, is critical
to maintain epithelial barriers and has been shown to par-
ticipate in carcinogenesis. Activation of NF-κB is a com-
mon protumoral event downstream of TLR recognition
of microorganism-associated molecular patterns [168].
Signaling by the intestinal bacteriumF. nucleatumwithin
the TME promotes CRC by TLR interaction and NF-κB
induction, creating a proinflammatory environment that
promotes resistance to cell death [80]. In the lungs,
TLR4 activation by the Gram-negative bacterial cell wall
component lipopolysaccharide was reported to increase
IL-6 and stimulate alveolar macrophages in the presence
of specific lungmicrobiota enriched in the Prevotella and
Veillonella genera [163]. Local lung antibiotic treatment
decreased implantation of tumor cells in a mouse model
of lung metastasis. The antitumoral effect of antibiotics
was associated with a reduction in regulatory T cells
and enhanced activation of T and NK cells [169].

Moreover, another study using antibiotics has also
reported a direct relationship between the intratu-
moral microbiota and lung tumor development in the
KrasLSL-G12D; p53flox/flox mouse model. In that study,
the lung microbiome stimulated IL-1b and IL-23 produc-
tion from myeloid cells, inducing γδ T cells that pro-
duced IL-17 and other molecules to promote
inflammation and tumor cell proliferation [24]. Antibi-
otic treatment also suppressed tumor growth in a pancre-
atic cancer mouse model. Depletion of the microbiota
with antibiotics correlated with a decrease in myeloid-
derived suppressor cells and an increase in M1 macro-
phage differentiation, inducing a rise in the number of
CD4+ T helper-1 and cytotoxic CD8+ T cells in the
TME [170]. However, a recent study showed that some
intratumoral bacteria were associated with an antitumoral
immune response in pancreatic cancer patients. Specifi-
cally, a pancreatic microbiota signature enriched in Pseu-
doxanthomonas, Saccharopolyspora, and Streptomyces
spp. was associated with an increased infiltration of
tumors with CD8+ T cells and long-term survival [65].

Microbial dysbiosis in cancer: cause or consequence

Throughout this review we have highlighted how the
microbiota and its products impact host health. Infection
or changes in the microbial composition in different tis-
sues can lead to a dysregulation of physiological func-
tions that can eventually promote cancer. However, the
opposite idea may also be true, wherein the rise of cancer
or a proinflammatory process in a specific tissue can
modify the environment, favoring the growth of some
bacterial species over others. This dysbiosis may trigger
the overgrowth of bacteria that promote tumor progres-
sion, creating a forward-amplifying loop. Many studies
have focused on the mechanisms by which the increase
in certain species of bacteria alters tumor progression,
but few have focused on how the growth of cancer cells
may trigger dysbiosis. It is also unclear whether dysbio-
sis (due to host genetics or diet) necessarily precedes
inflammation or, on the contrary, an inflammatory pro-
cess triggers dysbiosis. This question has been discussed
in the framework of different diseases, including cancer
[22,171,172].
Besides the role of inflammation per se, cancer cells

and non-cancer cells in the TME can alter the microenvi-
ronment’s metabolome via nutrient depletion and
metabolite production. These changes impose specific
metabolic conditions that in turn support the growth of
certain microorganisms. Generation of nitrate in the gut
after an inflammatory response promoted growth of the
commensal bacterium E. coli, which is able to use
nitrates as the terminal electron acceptor for anaerobic
respiration and energy production [173]. This ability
gave E. coli a competitive growth advantage against
other intestinal bacteria (Bacteroidetes and Firmicutes
phyla) who, as obligate anaerobes, lack the ability to uti-
lize nitrate and thus had to depend on fermentation. The
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nitrates were generated by the host, as mice deficient in
inducible nitric oxide synthase did not support the
growth of E. coli [173]. In breast tissue, higher levels
of Proteobacteria and Firmicutes were proposed to be
a consequence of local host fatty acid production [41].
Another study reported an association between an
increased abundance of Proteobacteria in the gut and
specific changes to the expression of metabolic pathway
genes [174].
That tumors create a niche for bacteria to colonize has

been exploited for therapeutic targeting. Interestingly,
although systemically administrated bacteria reach both
tumor and healthy tissues, only those bacteria in the
tumor persist and proliferate, supporting the idea that
the immunosuppressive and unique metabolic character-
istics of the TME can shape the local microbiome [175].
Collectively, these studies show the importance of
understanding both directions in this complex metabolic
relationship: not only howmicroorganisms regulate host
metabolism, but also how changes in host metabolism
(a hallmark of cancer) modulate the dynamics of bacte-
rial communities throughout the body.
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