From Harris and DeNicola, Trends in Cell Biology 2020

Dissecting the requirements for specific antioxidant enzymes for ROS resistance 

NRF2 is a stress-responsive transcription factor that directs select transcriptional programs in response to oxidative stimuli. NRF2 levels are tightly controlled by KEAP1, which directs NRF2 destruction. Our early work demonstrated a critical role for K-Ras induced NRF2 transcription in lung and pancreatic tumor initiation (DeNicola et al. Nature 2011). Further, NRF2 and KEAP1 mutations are common in certain cancers, including non-small cell lung cancer, and lead to loss of NRF2 degradation and constitutive NRF2 accumulation, thereby promoting glutathione synthesis, detoxification of reactive oxygen species (ROS) and proliferation. Because NRF2 engages both the glutathione- and thioredoxin-dependent antioxidant systems, it raises the question of whether any these semi-redundant systems can be targeted to reverse the resistance to ROS conferred by NRF2 activation. We find that the thioredoxin system or superoxide dismutase 1 are required for the resistance to the ROS-generating molecule ß-lapachone, but the glutathione synthesis and catalase are dispensible (Torrente et al., Redox Biology 2020). Moreover, using a CRISPR screening approach, we found that targeting enzymes within the thioredox system and the pentose phosphate pathway could sensitize KEAP1 mutant cells to this molecule (Jiang et al., Redox Biology 2022). Interestingly, we also found that deleting the mitochondrial superoxide dismutase 2 could also sensitize to ß-lapachone because of a failure to maintain ATP and NADPH.

 

Understanding the complex roles of NRF2 in tumor progression and metastasis

However, we find that the effects of NRF2 on tumor phenotypes are complex and highly context dependent. In a collaborative study with the Vousden lab, we showed that active suppression of ROS by NRF2 suppresses pancreatic cancer metastasis (Cheung et al., Cancer Cell 2020). To assess the effects of NRF2 activation on cellular metabolism and tumorigenesis in an isogenic system, we generated genetically engineered mouse models of both the NRF2D29H and KEAP1R554Q mutations found in human NSCLC. Surprisingly, these mouse models demonstrated that NRF2 activation promotes tumor initiation but impairs the progression of KrasG12D lung tumors (Kang et al. eLife 2019, DeBlasi et al. Cancer Research 2023). Work is ongoing to understand how NRF2 activation impairs tumor progression.

 

Open Questions:

  • Can we find druggable regulators of NRF2 in cells with KEAP1 loss of function?
  • Why does NRF2 activation impair progression of lung tumors?